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Abstract— The aim of this work is to compare some deter-
ministic optimization algorithms and evolutionary algorithms
on parameter estimation in a biological circuit design problem:
the negative feedback loop between the tumor suppressor
p53 and the oncogene Mdm2. We compared deterministic
optimization algorithms and evolutionary algorithms in terms
of robustness of the resulting parameters including all sources
of uncertainty into the statistical representation of reference
data and evaluating the obtained solutions in terms of confident
limits.

The experimental results obtained show as evolutionary
algorithms are more robust with respect of deterministic op-
timization algorithms in particular the algorithm Differential
Evolution (DE) showed the best performance over the mini-
mization of the fitting function.

I. INTRODUCTION

Accurately modeling and simulating biological networks
is a challenging problem, due to the complex interaction
between large numbers of interacting pathways, feedback
inherent to the system, and the stochastic nature of biological
processes. However, recent techniques have been developed
to model and simulate large-scale biological networks using
analogies from electrical circuits [15], [11]. Exploiting the
similarities between biological networks and electrical circuit
networks is an efficient methodology that can be used to
robust parameter identification of some circuit equivalents
of biological processes. The aim of this work is to give a
computational tool to analyze the robustness of the parame-
ters of multivariate, multi-scale, hybrid biological networks.

The major problem is that the results of the computation,
as with any complex simulation, are highly dependent not
only on the numerical accuracy of the simulation technique,
but also on the particular values of model parameters as well
as the simulations initial conditions. Biological circuits are
inherently hybrid, with both discrete and continuous compo-
nents. Hybrid systems are notorious for their non-intuitive
behavior, and potentially high sensitivity to variations in
model parameters.

Blindly choosing unknown parameters can make it impos-
sible to simulate the desired behavior for example, it could
not be possible for a model to reach a desired equilibrium
from a given initial condition, even though the mechanics of
the model are correct. Additionally, biological parameters
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that are not known experimentally (incomplete or noisy
data), may have an unintentionally large effect on biological
simulation accuracy [15].

A variety of computational approaches, based on optimiza-
tion [7], evolutionary algorithms [4], [12], and other method-
ologies, have been used to estimate biological parameters.
However, it has never been done a study on the robustness
of the reached set of parameters for each tested algorithm
to provide a highly accurate, though often computationally
intensive, description of the systems behavior.

In this paper we present a methodology inspired by the
electronic circuit design described in [1] to study the most
robust optimization algorithms (less sensitive to the noise
of the experimental data) for parameter identification that
are critical for matching the known experimental data. In
this study the biological circuits are defined by quantita-
tive system model through systems of Ordinary Differential
Equations(ODE).

In order to compare the robustness of the sets of parame-
ters and also the computational effort we have tested classical
methods such as LSQNONLIN of MATLAB, DIRECT, and
a Pattern Search Algorithm and two evolutionary algorithms:
CMA-ES and DE.

We tested our methodology to one of the best-studied
protein circuits in human cells: the negative feedback loop
between the tumor suppressor p53 and the oncogene Mdm2
In the p53 system, p53 transcriptionally activates Mdm2.
Mdm2, in turn, negatively regulates p53 by both inhibiting
its activity as a transcription factor and by enhancing its
degradation rate. For different parameters of the feedback
loop, the dynamics can show either a monotonic response,
damped oscillations, or undamped (sustained) oscillations in
which each peak has the same amplitude as the previous
peak. The stronger the interactions between the proteins, the
more oscillatory the dynamics. Other parameters, such as
high basal degradation rates of the proteins, tend to damp
out the oscillations.

II. METHODOLOGY

Parameter estimation problems of nonlinear dynamic sys-
tems are stated as minimizing a cost function that measures
the goodness of the fit of the model with respect to a
given experimental data set, subject to the dynamics of the
system (acting as a set of differential equality constraints)
plus possibly other algebraic constraints. Mathematically, the
formulation is that of a nonlinear programming problem
(NLP) with differential-algebraic constraints [12]:

Find p to minimize:



Fig. 1. Problem definition of the Optimization framework in Biological
Parameter Estimation

Z =
∫ tf

0

(ymsd(t)− y(p, t))T W (t)(ymsd(t)− y(p, t))dt

(1)
subject to:

f(
dx

dt
, x, y, p, v, t) = 0

x(t0) = x0

h(x, y, p, v) = 0
g(x, y, p, v) ≤ 0

pL ≤ p ≤ pU

where Z is the cost function to be minimized, p is the
vector of decision variables of the optimization problem, the
set of parameters to be estimated, ymsd is the experimental
measure of a subset of the (so-called) output state variables,
y(p, t) is the model prediction for those outputs, W (t) is
a weighting (or scaling) matrix, x is the differential state
variables, v is a vector of other (usually time-invariant)
parameters that are not estimated, f is the set of differential
and algebraic equality constraints describing the system
dynamics (i.e., the nonlinear process model), and h and g
are the possible equality and inequality path and point con-
straints that express additional requirements for the system
performance. Finally, p is subject to upper and lower bounds
acting as inequality constraints. The formulation above is that
of a nonlinear programming problem (NLP) with differential-
algebraic (DAEs) constraints. Because of the nonlinear and
constrained nature of the system dynamics, these problems
are very often multimodal (nonconvex).

This process is usually performed as a sequence of opti-
mizations, usually based on the Levenberg-Marquard algo-
rithm, which require a good initial guess and yield only local
minimum (corresponding to different set of parameters). In
this context two problems arise. First, get a robust estimation

for parameters when there are several measurement curves.
Second, how to choose the most convenient set of parameter
values to obtain the best approximation for the circuit model.

Preliminary investigations have been carried out with dif-
ferent optimization software and they have yielded different
sets of parameters. This fitting is based on a initial estimation
of the parameter. Comparison of this data shows large
variance of identified parameter values [7], [12]. Causes of
these behaviors could be non-homogeneous kind of variables;
variables can converge with different speed rates; merit func-
tion of optimization on l2 norm can find different balancing
among errors; first and second derivative do not lead the
optimization in useful regions. Previous remarks compel to
consider the quality of results is sense of robustness.

In some previous works [2], [9], [3] focused on robust
biological circuit design, robustness is defined as a measure
of tolerance of kinetic parameter variations with the existence
of the steady states of the biochemical network preserved.
Sensitivity analysis are conventionally employed to assess
the robustness of biochemical networks [17].

In our case the concept of uncertainty wants to summarize
various problem related to degree of model approximation,
imprecisions on performing calculations, statistical represen-
tation of data. In electronic circuit design problems [1],
a general practice is to include all sources of uncertainty
into the statistical representation of data and evaluate the
robustness of solution in terms of confident limits. The
term ”robust” was coined in statistics by G.E.P. Box in
1953. General, referring to a parameter extraction for fitting
a statistical model of data, it means ”insensitive to small
departures” from the idealized assumptions for which the
data model is optimized. The word ”small” can have two
different interpretations, both important: either fractionally
small departures for all data points, or else fractionally
large departures for a small number of data points. It is the
latter interpretation, leading to the notion of outliers, that is
generally the most stressful for statistical procedures. In this
work we used the M-estimate obtained by minimizing the
mean square deviation.

The comparisons in this work want to be more explicit
regarding the precise meaning of these quantitative uncertain-
ties, and to give further information about how quantitative
confidence limits on fitted parameters can be estimated.
Through the Montecarlo simulation it is possible to repeat
virtually an experiment and to get a quality measure of
fitting robustness. The simulation starts with a initial fitting
in order to identify a possible set of parameters. This set of
parameters is used to synthesize a new surrogated set of data
which are perturbed by a white noise. In this study the noise
is a gaussian error with µ = 0 and σ = 1/10 of the data
magnitude.

This process mimes artificially the statistical properties of
real data. Then the fitting is processed on this surrogated data
to get a new set of parameters. This kind of artificial process
is repeated many times to get a large class of parameter.
Finally, classical statistics are performed on this class of
parameters and confidence limit on parameters are calculated



from these simulations.

III. ALGORITHMS

In order to compare the robustness of the sets of param-
eters and also the computational effort, the following three
deterministic methods have been considered.

LSQ The function LSQNONLIN of Matlab solves non-
linear least-squares problems, including nonlinear
data-fitting problems. In our case we use the al-
gorithm with the default options of large scale
optimization, which uses the subspace trust method
based on the Levenberg-Marquardt [13] method
over Gauss-Newton algorithm to compute the de-
creasing direction.

Direct Global search method that applies to Lipschitz
continuous function and, after an initial implicit
estimate of the Lipschitz constant chooses the
potentially optimal rectangles and resamples them
across their axis. Subsequently it divides these
rectangles and proceed sampling and dividing until
a stopping criteria is met [8]. This method exploits
the estimation of Lipschitz constant to balance
global and local search and reaches quasi-global
solution in large domain.

GPS Pattern Search algorithms [10] are known as Search
and Poll algorithms. In the search step, any finite set
of mesh points can be evaluated. When the search
step fails the algorithm calls the poll procedure that
consists in evaluating the objective function at the
neighboring mesh points to see if a lower function
value can be found.

We compared the results testing also two evolutionary
algorithms:

CMA–ES The CMA-ES (Covariance Matrix Adaptation
Evolution Strategy) [6] is an evolutionary algorithm
for difficult non-linear non-convex optimization
problems in continuous domain. The CMA-ES is a
second order approach and estimates a covariance
matrix within an iterative procedure. Adaptation
of the covariance matrix amounts is similar to
the approximation of the inverse Hessian matrix.
Restarts with increasing population size improve
the global search performance.

DE Differential Evolution (DE) was introduced by
Storn and Price [16]. DE works as follow: after
a random initialization the objective function is
evaluated and the following steps are repeated
until a termination condition is satisfied. Each
individual is updated using a weighted difference
of a number of selected parent solutions. If the
offspring replaces the parent only if it improves
the fitness value, otherwise the parent is copied in
the new population. The crucial idea behind DE
is this new scheme for generating trial parameter
vectors. DE generates new parameter vectors by
adding the weighted difference vector between two

Fig. 2. Graphical model of the negative feedback loop between P53 and
Mdm2.

population members to a third member. If the
resulting vector yields a lower objective function
value than a predetermined population member, the
newly generated vector replaces the vector with
which it was compared. The comparison vector
can, but need not be part of the generation process
mentioned above. In addition the best parameter
vector is evaluated for every generation in order
to keep track of the progress that is made during
the minimization process. Using Storn and Price
naming convention we used the classical version
of DE DE/rand/1.

IV. CASE STUDY: A NEGATIVE FEEDBACK LOOP

The considered test case is the negative feedback loop
between the tumor suppressor p53 and the oncogene Mdm2
[14] which is one of the best-studied protein circuits in hu-
man cells. In the p53 system, p53 transcriptionally activates
Mdm2. Mdm2, in turn, negatively regulates p53 by both in-
hibiting its activity as a transcription factor and by enhancing
its degradation rate. For different parameters of the feedback
loop, the dynamics can show either a monotonic response,
damped oscillations, or undamped (sustained) oscillations in
which each peak has the same amplitude as the previous
peak. The stronger the interactions between the proteins, the
more oscillatory the dynamics. Other parameters, such as
high basal degradation rates of the proteins, tend to damp
out the oscillations.

Figure 2 shows the graphical model of the negative feed-
back loop between p53 and Mdm2.

The mathematical formulation of the nonlinear dynamic
model consists of the system of 5 ODEs shown in equations
2 that describes the variation of the proteins concentrations
with time.



d[p53]
dt = − V 1·[p53]

[p53]+kp1 + kdp1 · [p− p53] + kf1+

+kd1·[p53]·[p−Mdm2]
[p53]+kdeg1

d[p−p53]
dt = V 1·[p53]

[p53]+kp1 − kdp1 · [p− p53]+

−kd2·[p−p53]·p−Mdm2
[p−p53]+kdeg2

d[Mdm2]
dt = − V 2·[Mdm2]

[Mdm2]+kp2 + kdp2 · [p−Mdm2]+
+kf3 · [Mdm2 pre]− kd3 · [Mdm2]

d[p−Mdm2]
dt = −kd4 · [p−Mdm2] + V 2·[Mdm2]

[Mdm2]+kp2+
−kdp2 · [p−Mdm2]

d[Mdm2 pre]
dt = kf2 · [p− p53]− kf3 · [Mdm2 pre]

(2)
The parameters involved in the mathematical formulation

of the problem are the following:
kf1 p53 translation rate
V1 Enzyme reaction rate for p53 phosphorylation
Kp1 Michaelis constant for p53 phosphorylation
kdp1 p-p53 dephosphorylation rate
kd1 p-Mdm2 enzyme reaction rate for p53 degradation
Kdeg1 Michaelis constant for p53 degradation
kd2 p-Mdm2 enzyme reaction rate for p-p53 degrada-

tion
Kdeg2 Michaelis constant for p-p53 degradation
kf2 Mdm2 transcription and translation rate
kf3 Mdm2 post-translational modification rate
V2 Enzyme reaction rate for Mdm2 phosphorylation
Kp2 Michaelis constant for Mdm2 phosphorylation
kdp2 p-Mdm2 dephosphorylation rate
kd3 Mdm2 degradation rate
kd4 p-Mdm2 degradation rate
In our study the global optimization problem was stated

as the minimization of the following quadratic objective
function

Z =
n∑

i=1

m∑

j=1

([ypred(i)− yexp(i)]j)2 (3)

where n is the number of data for each specie, m is the
number of species, yexp represents the known experimental
data, and ypred is the vector of states that corresponds to the
predicted theoretical evolution using the model with a given
set of the parameters.

To better assess the performance of the optimization
algorithms for the solution of the inverse problem, pseudo-
experimental data were generated by simulation from a set of
chosen parameters (to be considered as the true, or nominal,
values) shown in Table I. Thus, pseudo-measurements of
the concentrations of the species were the result of different
experiments (simulations) in which their concentrations were
varied. These simulated data represent results of experiments
with the additional measurement noise.

In bold are showed the five parameters that were chosen
for the optimization because are critical in the calculation of
the error between the simulated data and the known experi-
mental data. This subset of parameters was identified through
Latin Hypercube sampling and calculating the correlation
coefficients with respect to the error residue.

Parameters Nominal Value
kf1 0.9
V1 4
Kp1 2
kdp1 1
kd1 8.5

Kdeg1 0.1
kd2 0.85

Kdeg2 0.01
kf2 1.1
kf3 0.8
V2 0.8
Kp2 0.2
kdp2 0.4
kd3 0.08
kd4 0.8

TABLE I
THE PARAMETERS OF THE MODEL AND THEIR NOMINAL VALUES.

From the biological point of view the above selected
parameters directly/indirectly control the steady state level of
p53, suggesting that, to maintain a stable p53 concentration
in the system, they are critical for proper cell response.

A. Results

These results show the best values obtained after per-
forming 60 independent runs for each algorithm while the
Montecarlo simulation used synthetic data set created adding
a gaussian error with µ = 0 and σ = 1/10 of data magnitude
in the initial data set. All methods tackled use as termination
condition the maximum number of objective function evalu-
ations. In particular in this test case, the maximum number
of function evaluations has been fixed to 1000. The bound
of each parameter was set to the same order of magnitude
that contains the reported values showed in Table I.

The tested algorithms demonstrated different degrees of
reliability in reaching the solutions over the all independent
runs. For each method, after the Montecarlo simulation, we
calculated the percentage of success. Each success implied an
identification of a set of parameters which characterizes the
behavior of the curves (the variation of the concentrations
over the time) accurately with respect to the experimental
data. Direct and DE showed 100% of success in the identi-
fication of the parameters, PSearch and CMA had a 90% of
success while LSQ only a 60%.

The LSQ method showed larger confidence limits in
the Montecarlo simulation for the parameters estimated in
Table II as we can see through the standard deviation of
the parameters. The most robust parameter are found by
DE algorithm (first best algorithm) and Direct algorithm
even if Direct reaches a smaller value of the minimized
function slower than the other algorithms (see Figure 4). The
confidence interval of the estimated parameters reached by
DE and Direct algorithms are shown in Figure 3 in which
the minimum, mean and maximum reached values are shown
while the stars represent the nominal values.

In Table III are showed comparison among the tested
optimization algorithms on the mean value and standard
deviation of the minimized objective function Z during the



Kf1 Kdp1 Kd1 V2 Kdp2
Direct 0.93±0.01 1.08±0.05 8.56±0.25 0.81±0.07 0.46±0.15
LSQ 0.67±0.25 1.34±0.47 6.46±2.11 0.73±0.16 0.54±0.18
GPS 0.86±0.14 1.06±0.11 8.04±0.96 0.87±0.12 0.55±0.18

CMA-ES 0.88±0.06 1.04±0.15 8.18±0.86 0.82±0.12 0.5±0.2
DE 0.9±0.02 1±0.01 8.52±0.25 0.8±0.03 0.41±0.07

TABLE II
COMPARISON AMONG THE TESTED OPTIMIZATION ALGORITHMS ON THE

MEAN VALUE AND STANDARD DEVIATION OF EXTRACTED PARAMETERS

AFTER THE MONTECARLO SIMULATION.

Fig. 3. Minimum, maximum and mean value for each parameter estimated
by DE and Direct during the Montecarlo simulation

Montecarlo simulation. The best results over the objective
function minimization were reached by DE, while the second
best method was Direct.

mean(Z) std(Z)
Direct 0.004 0.005
LSQ 0.16 0.2
GPS 0.035 1.14

CMA-ES 0.06 0.32
DE 2.02e−4 6.36e−4

TABLE III
COMPARISON AMONG THE TESTED OPTIMIZATION ALGORITHMS ON THE

MEAN VALUE AND STANDARD DEVIATION OF THE MINIMIZED

OBJECTIVE FUNCTION Z DURING THE MONTECARLO SIMULATION.
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Fig. 4. Objective Function value during one run of each tested algorithm

As a preliminary testing we focused on the parameter
estimation problem without the analysis of the robustness
taking into account all the 15 parameters of the model.
The numerical simulations showed that only LSQ, DE and
CMA-ES reached a reasonable fitting of the data while both
Direct and GPS got stuck into an unfeasible point. Table
IV shows the comparison among the optimization algorithms
LSQ, CMA-ES and DE on the parameter estimation problem
in terms of reached object function value and number on
function evaluations. Each algorithm made use of the stop-
ping criterium of the minimum tolerance of the evaluated
objective function of 10−3.

Z # func eval
LSQ 0.0008 432

CMA-ES 0.0003 4573
DE 0.0006 75000

Direct N.A. N.A.
GPS N.A. N.A.

TABLE IV
COMPARISON AMONG THE OPTIMIZATION ALGORITHMS LSQ, CMA-ES

AND DE ON THE PARAMETER ESTIMATION PROBLEM IN TERMS OF

REACHED OBJECT FUNCTION VALUE AND NUMBER ON FUNCTION

EVALUATIONS.

Table V shows the search parameters utilized by the
evolutionary algorithms CMA-ES and DE on the parameter
estimation problem that take into account all the 15 param-
eters of the model.

CMA-ES N=15; λ=12; µ=6;
MaxFunEval=10000; TolFun=10e− 4

DE VTR=10e− 4; st=1; D=15; NP=200;
IterMax=500; F=0.85; CR=1

TABLE V
SEARCH PARAMETERS UTILIZED BY THE EVOLUTIONARY ALGORITHMS

V. CONCLUSIONS

In this article we compared evolutionary algorithms and
deterministic optimization methods facing an optimization
problem on a biological circuit design test case. The opti-
mization problem concerned parameter identification of the
negative feedback loop between the tumor suppressor p53
and the oncogene Mdm2. Based on this biological circuit
design problem and on the above reported statistical analysis,
we can make the following statements. For the parameter
identification problem of the biological circuit model, using a
Montecarlo simulation, the evolutionary strategy DE and the
deterministic method Direct are the most robust in the sense
that they are less sensitive to the noise of the experimental
data. Both Direct and DE showed 100% of success in the
identification of the parameters that characterize the curves
of the variation of the concentrations over the time accurately
with respect to the experimental data. In terms of the data



fitting (value of the objective function) the evolutionary algo-
rithm DE is more effective than the other tested optimization
methods.

Considering the complete problem of identification of the
whole set of parameters LSQ showed the best results in terms
of reached object function value and the number on function
evaluations even if it is more dependent to the chosen initial
search point.

It is recommendable to perform a first global search on the
complete parameter set using LSQ algorithm which require
less computational effort in terms of CPU time and number
of function evaluations but using a multi-start strategy [5]
using the method repeatedly, starting from a number of
different initial points to avoid to stuck in a local minimum.

After defining the value of the whole parameters of the set,
identify the parameters which are more critical for matching
the known experimental data (e.g. through Latin Hypercube
sampling and calculation of correlation coefficients), and
perform the robustness of that parameters using DE.
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